

International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Special Issue-11 pp. 4047-4054 Journal homepage: <u>http://www.ijcmas.com</u>

Review Article

Role of Dietary Fibre in Management of Lifestyle Related Diseases

Puja^{1*}, Sadhna Singh¹, Swati Shukla¹, Rajni Singh² and Zeenat Aman¹

¹Department of Food Science and Nutrition, College of Community Science, Acharya Narendra Dev University of Agriculture and Technology Kumarganj, Ayodhya, India ²BBAU, Lucknow, India

*Corresponding author

ABSTRACT

Diet has a major impact on gut microbiota and different components of diet will shape the gut bacteria communities. A diet rich in fiber contributes to the maintenance of a healthy gut microbiota associated with increased diversity and functions such as production of short chain fatty acids. Significant changes in our lifestyle and increasing urbanization has impact on our diet too, it has resulted in consumption of more processed and packed food along with high sugar and protein intake; These dietary changes have altered the normal flora of the human gut. This results in significant reduction in their ability to produce short chain fatty acids and is associated with the appearance of chronic inflammatory diseases. High fiber intake and production of short chain fatty acids by the gut bacteria enhances mucous and antimicrobial peptide production. The gut microbiota and diet are two important components to maintain a normal structure and for the production of the intestinal mucus. Dietary fiber is an indigestible portion of food which helps in fighting against several diseases mainly associated with modern lifestyle. Dietary fiber is the remnants of the plant cells resistant to hydrolysis(digestion) by the alimentary enzymes of human beings. It consists of hemicellulose, cellulose, lignin, oligosaccharide, pectins, gums and mucilages. There are two types of dietary fiber i.e., soluble (pectin, gums) and insoluble dietary fiber (cellulose, hemicellulose, lignin). Some water-soluble fibers such as pectins, gums and hemicellulose have a high-water holding capacity and forms viscous solution with in the gastrointestinal tract. Foods rich in dietary fiber (like cereals, pulses, fruits, vegetables and edible herbs) are known to have safeguarding effects on human health since their consumption has been related to decreased incidence of several lifestyle diseases due to its beneficial effects like increasing the volume of fecal bulk, decreasing the intestinal transit time, cholesterol and glycemic levels. Fiber rich foods are generally seen to have low calories, fat but have high volume along with high micronutrient content. Therefore, it is suggested that healthy adults should eat between 20 to 35g of dietary fiber each day. High fiber diet increases satiety and delays gastric emptying by releasing certain gut hormones. Dietary fiber exerts its beneficial effects by speeding the passage of feces through the large intestine so that the contact of carcinogens with the intestinal is significantly reduced.

Keywords

Dietary Fiber, Gut health, Life Style Diseases, Soluble Fiber

Introduction

Food is a basic need for our survival and well beings. It is not only essential to maintain human growth, reproduction and health, but it also modulates and support the symbiotic microbial communities that colonize the digestive tract- the gut microbiota. Type, quality and origin of our food shape our gut microbes. Diet has a major impact on gut microbiota and different components of diet will shape the gut bacteria communities. A diet rich in fiber contributes to the maintenance of a healthy Gut microbiota associated with increased diversity and functions such as production of short chain fatty acids with industrialization of diet, low fiber intake and high protein and sugar consumption, the diversity of gut bacteria is reduced and their function is altered, including significant reduction in their ability to produce short chain fatty acids and associated with the appearance of chronic inflammatory diseases. Dietary fiber consists of remnants of plants cells resistant to hydrolysis (digestion) by the alimentary enzyme of human". In 2008, the Scientific Advisory Committee on Nutrition (SACN) defined dietary fiber as non-starch polysaccharides (NSP). The definition of dietary fiber was revised in 2015 to include all carbohydrates that are neither digested nor absorbed in the small intestine and have some degree of polymerization of three or more monomeric units and lignin. Traditionally, dietary fibre is defined as the proportion of plant foods that were resistant to digestion by the human digestive enzyme, this includes polysaccharide and lignin. More recently, the definition has been expanded to include oligosaccharide, such as insulin and resistant starches (Jones et al., 2006). The amount and composition of fiber differ from food to food (Desmedt and Jacobes, 2001). A fiber rich diet is lower in energy density, often has a lower fat content, is larger in volume and is richer in micronutrients.

The human microbiota is the collection of microbes that live in human body, with the largest and most diverse cluster of microorganisms inhabiting the gut (Logan and Jacka. 2016). microbiome The contributes to homeostasis regulation in different tissue in our body (Schroedar and Backhed, 2016) However, although the overall interrelationship of human with their microbiota can be considered a mutualistic symbiosis (Walter et al., 2011) eubiosis, which refers to a healthy balance of microbes in the gut, can be disrupted, leading to the development of various chronic diseases with an underlying inflammatory condition (Hand et al., 2016).

The "Gut Microbiota" constitute a complex community that interacts with each other and with the host which modulate biological essential for health. process Our understanding of the biological role of gut microbiome, which include modulating juvenile growth (Schwarzer et al., 2016), maturation of immune system (Rescigno, 2014) and modulation of glucose and lipid metabolism (Backhod et al., 2004) has increased dramatically in the past decade. Change in the modern lifestyle, lead to the reduction of intestinal micro-organism, abundance and diversity, which effect the health of the body (Martinez, I, Stegen et al., 2013).

Classification of Dietary Fiber

Classification of Dietary Fiber

Depending on the solubility dietary fiber are classified in two groups-

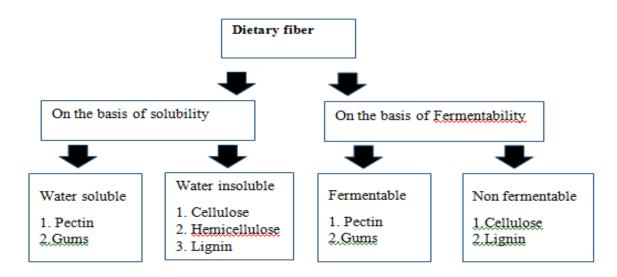
Soluble dietary fiber

Soluble fiber are indigestible but soluble in water. Soluble dietary fibers increase total transit time by delaying gastric emptying and also slowing glucose absorption

Physiochemical	Types of Fiber	Physiological effect	Clinical implication
property			
Viscosity	Gums, mucilage,	Decreased gastric emptying	Dumping Syndrome
	pectin	Increased mouth to cecum transit,	Diabetes
		Decreased rate of small intestinal	Hypercholesterolemia
		absorption(e.g., of glucose bile acids)	
		Reduction of cholesterolaemia	
Particle formation	e.g. Wheat bran,	Increased Gastric emptying	Peptic ulcer
and water holding	pentosane	Decreased mouth cecum transit,	Constipation
capacity	content,	Decreased total transit time,	Deverticular disease
	polysaccharide-	Decreased Colonic intraluminal	Dilute potential
	lignin mixtures	pressure,	carcinogens
		Increased Faecal bulk	
		Fermentation in colon	
Adsorption and	Lignin, pectin,	Increased fecal steroids output	Hypercholesterolemia
non- specific effect	mixed fibres	Increased fecal fat and nitrogen	Cholelithiasis
		losses(small)	
Cation exchange	Acid	Increased Small intestinal losses of	Negative mineral
	polysaccharide	minerals, trace element, heavy	balance, probably
	e.g. pectins	metals.	compensated for by
		Reduction of nutrient availavility	colonic salvage,
A 1 .	T · ·		antitoxic effect
Antioxident	Lignin	Decreased free redicals in digestive	Anticarcinogenesis
	(Reducing	tract	
	phenolic groups)		
Degradability	Polysaccharide(Increased Gas and SCFAs	Flatus, energy
(colonic bacteria)	free of lignin)	production,	production
		Decreased cecum pH	

Table.1 Physiochemical, Physiologic and clinical aspect of fibre

Eastwood M. A, Kay, R. M and Kay, R. M Strasberg S. M, Kendall *et al.*, (2010), Rastall (2010); Viuda-Martos *et al.*, (2010), Brownlee, 2011


Table.2 Role of Fiber in Prevention and Management of lifestyle related diseases

Disease	Type of fibre involved	Physiological mechanism
Constipation	Insoluble fibre	Increase the water holding capacity.
Diverticulosis	Cellulose	Increase stool weight.
Irritable bowel syndrome	Cereal bran, whole wheat	Reduce the transit time. Enhance gastric motility.
Varicose vein	flour, roots vegetable,	The consumption of inulin-type fructans affects
Piles	legumes, outer covering of	intestinal microbiota and stimulates bowel
(Haemorrhoids)	legumes seeds, apple	movements normalizing stool frequency in
		constipated patients (Quigley 2011).
		Volatile fatty acids which are released by the
		bacteria have a laxative effect.
		Faster bowel emptying due to increased intra
		luminal mass bulk.

		It has been demonstrated that galacto-
		oligosaccharides seemed to promote the intestinal
		peristalsis and relieve constipation (Li et
		al. 2013).
Concer of Lorge intesting	Insoluble fibre	
Cancer of Large intestine	insoluble libre	Change in the population of microbes in the GI tract.
		Increased binding of intestinal bile acids.
		Food residue remains in the colon for less time for
		carcinogen to be absorbed.
		Increased stool weight and volume.
		Increased frequency of defaecation.
		Bulk and water of faeces may dilute the
		carcinogen to a non- toxic level.
		Fibre induced effects on faecal nitrogen.
		Influence on bile acids and mutagens in the colon.
		Adsorbing cancer producing hydrocarbons
		(lignins)
Coronary Heart Disease	Soluble fibre, β glucon	Cholesterol synthesis is inhibited by acetic,
Gall stone	content, oats, pectin.	propionic, butyric acids produced by bacterial
	Guargum, psyllium, husk,	fermentation.
	beans fruits& vegetables	Clearence of LDL cholesterol.
		Slow gastric emptying and binds bile acids.
		Increases excretion of steroids.
		Reduces serum fibrinogen and therefore reduce
		blood clot formation.
		Reduce fatty acid absorption.
		Lowers the blood pressure through increased
		absorption of calcium and magnesium.
		Fibre binds faecal bile acid and increases
		excretion of bile acid derived cholesterol.
Diabetes Mellitus	Soluble fibre, legumes seed	Rate of glucose absorption is decreased because
	coverings.	of physical barrier for the outer coating of
		legumes.
		Reduced the requirement of insulin.
		Increased insulin peripheral sensitivity.
		Alters gut hormones to enhance glucose
		metabolism in liver.
		Administration of soluble fibers, such as
		oligofructose and long-chain inulin, corrected gut
		dysbiosis, reduced body weight gain and low-
		grade inflammation, and improved glucose
		metabolism, which was at least attributed to
		decreased intestinal permeability and
		endotoxemia (Cani et al., 2007, 2008).
		most soluble NSPs, especially polymers with high
		molecular weight such as guar gum, certain
		pectins, b-glucans, and psyllium, are viscous,
		meaning that they are able to form a gel structure

		in the intestinal tract that can delay absorption of glucose and lipids influencing post-prandial metabolism (Deehan et al., 2017).
Obesity	Soluble fibre	Gastric emptying is delayed and feeling of satiety is increased.
		Diet high in fibre is low in calories.
		High fiber intake is associated with increased gut
		microbial diversity and lower long-term weight
		gain (Menni et al., 2017).

Fig.1 Classification of Dietary Fiber

Pectin

They are the structural components of plant cell walls and also act as intracellular cementing substances. Pectin is highly water soluble and is almost completely metabolized by colonic bacteria. Due to their gelling behavior, these soluble polysaccharides, may decrease the rate of gastric emptying and influence small intestinal transit time. They explain their hypoglycemic properties (Jenkins *et al.*, 1978)

Gums and mucilages

These are type of plant fiber that are not cell wall components but are formed in the specialized secretory plant cells (Van Dennffer *et al.*, 1976.). These are reported to be highly branched polysaccharides that forms gels, bind water and other organic material. Partial enzymatic hydrolysis results in a product that can be used as a soluble dietary fibre. Gum Arabic is exudated from the acacia tree, is a complex arabinogalactan polysaccharide in admixture with a glycoprotein. Mucilage are secreted into the endosperm of the plant seeds where they act to prevent excessive dehydration.

Insoluble dietary fiber

Insoluble fibers are indigestible and insoluble in water. Insoluble dietary fibre are also associated with decrease in intestinal transit time that help to prevent and relive constipation.

Cellulose

It is the major cell wall component in plants, in plants, an unbranched linear chain of several thousand glucose units with β -1,4 glucosidic linkages. Cellulose's mechanical strength, resistance to biological degradation, low aqueous solubility and resistance to acid hydrolysis result from hydrogen bonding within the microfibrils. Aspinall (1970) studies that cellulose is insoluble in strong alkali and there is portion (10-15%) of cellulose, referred to 'amorphous'' that is more readily acid hydrolyzed. Cellulose is not digested to any extent by the enzymes of human gastrointestinal system.

Hemicellulose

These are cell wall polysaccharides by aqueous alkali after removal of water soluble and pectic polysaccharides. They contain backbone of glucose unit β -1,4 glucosidic linkages, but differ from cellulose in that they are smaller in size, contains variety of sugars and are usually branched (Kay 1982). They contain mostly xylose and some galactose, mannose, arabinose and other sugars (Anita and Abraham 1997).

Lignin

It is the woody parts of plant cell wall contributes to the structural rigidity of plants. It is thought to responsible for the resistance of cell wall to microbial degradation. Insoluble in water, and is not digested by colonic bacteria. Lignin demonstrates greater resistance than any other naturally occurring polymer.

Role of dietary fiber in management of lifestyle related diseases

Dietary fiber are important energy sources for cecum and colan-residing microbiota. The

diets with a high content of fiber, such as those rich in cereals, fruits and vegetables have a positive effect on health since their consumption has been related to decreased incidence of several type of lifestyle related diseases as due to its beneficial effect like increasing the volume of fecal bulk. decreasing the intestinal transit time. cholesterol and glycemic levels, trapping substances that can be dangerous for the human organism(mutagenic and carcinogenic agents), stimulating the proliferation of the intestinal flora etc.(Heredia et al., 2002, Beecher 1999).

References

- American Association of Cereal Chemists (AACC) in 2000 defined dietary fibre as the edible parts of plant or analogous carbohydrates that are resistant to digestion and absorption in the human small intestine with complete or partial fermentation in the large intestine.
- Anita F P, Abrahm P (1997) Clinical dietetics and nutrition, Delhi Oxford University Press, Calcutta, pp73-77
- Aspinall G O (1970) Polysaccharides, Pregmon Press, Oxford, pp 130-144
- Beecher, G. R. (1999). Phytonutrients' role in metabolism: effects on resistance to degenerative processes. *Nutrition Reviews*, 57(9), 3-6.
- Beecher, G. R. (1999). Phytonutrients' role in metabolism: effects on resistance to degenerative processes. *Nutrition Reviews*, 57(9), 3-6.
- Brownlee, I. A. (2011). The physiological roles of dietary fibre. *Food hydrocolloids*, 25(2), 238-250.
- Cani, P. D., Bibiloni, R., Knauf, C., Waget,A., Neyrinck, A. M., Delzenne, N.M., and Burcelin, R. (2008). Changesin gut microbiota control metabolicendotoxemia-induced inflammation in

high-fat diet–induced obesity and diabetes in mice. *Diabetes*, 57(6), 1470-1481.

- Căpriță, A., Căpriță, R., Simulescu, V. O. G., & Drehe, R. M. (2010). Dietary fiber: Chemical and functional properties. Journal of Agroalimentary Processes and Technologies, 16(4), 406-416.
- Desmedt A, Jacobes H (2001) Soluble fibre, In guid to functional food ingredients. Food RA Leatherhead Publishing, surrey, England, pp112-140
- Dhingra, D., Michael, M., Rajput, H., and Patil, R. T. (2012). Dietary fibre in foods: a review. *Journal of food science and technology*, 49(3), 255-266.
- Hand, T. W., Vujkovic-Cvijin, I., Ridaura, V. K., and Belkaid, Y. (2016). Linking the microbiota, chronic disease, and the immune system. *Trends in Endocrinology & Metabolism*, 27(12), 831-843.
- Heredia A, Jimenez A, Fernadez-Balanose J, Gullen R, Rodriguez R (2002), Fibra Alimentaria. Biblioteca de Ciencias, Madrid, pp1-177
- Jenkins, D. J., Wolever, T. M., Leeds, A. R., Gassull, M. A., Haisman, P., Dilawari, J.,... & Alberti, K. G. (1978). Dietary fibres, fibre analogues, and glucose tolerance: importance of viscosity. *Br Med J*, *1*(6124), 1392-1394.
- Jones, J. R., Lineback, D. M., & Levine, M. J. (2006). Dietary reference intakes: implications for fiber labeling and consumption: a summary of the International Life Sciences Institute North America Fiber Workshop, June 1–2, 2004, Washington, DC. Nutrition reviews, 64(1), 31-38.
- Kay, R. M. (1982). Dietary fiber. *Journal of lipid research*, 23(2), 221-242.
- Li T, Lu X, Yang X (2013) Stachyoseenriched alpha-galacto-

oligosaccharides regulate gut microbiota and relieve constipation in mice. J Agric Food Chem 61(48):11825–11831

- Logan, A. C., Jacka, F. N., & Prescott, S. L. (2016). Immune-microbiota interactions: dysbiosis as a global health issue. *Current allergy and asthma reports*, 16(2), 13.
- Makki, K., Deehan, E. C., Walter, J., & Bäckhed, F. (2018). The impact of dietary fiber on gut microbiota in host health and disease. *Cell host & microbe*, 23(6), 705-715.
- Martínez, I., Lattimer, J. M., Hubach, K. L., Case, J. A., Yang, J., Weber, C. G.,... & Walter, J. (2013). Gut microbiome composition is linked to whole graininduced immunological improvements. *The ISME journal*, 7(2), 269-280.
- Menni, C., Jackson, M. A., Pallister, T., Steves, C. J., Spector, T. D., & Valdes, A. M. (2017). Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. *International Journal of Obesity*, 41(7), 1099-1105.
- Pyne, V., & Macdonald, I. A. (2016). Update on carbohydrates and health: the relevance of the Scientific Advisory Committee on Nutrition report for children. *Archives of disease in childhood*, 101(10), 876-880.
- Quigley E M (2011) The enteric microbiota in the pathogenesis and management of constipation. Best Pract Res Clin Gastroenterol 25(1):119–126
- Rastall, R. A. (2010). Functional oligosaccharides: application and manufacture. *Annual review of food science and technology*, *1*, 305-339.
- Rescigno, M. (2014). Intestinal microbiota and its effects on the immune system. *Cellular Microbiology*, *16*(7), 1004-1013.

- Schroeder, B. O., & Bäckhed, F. (2016). Signals from the gut microbiota to distant organs in physiology and disease. *Nature medicine*, 22(10), 1079.
- Trowell, H., Burkitt, D., & Heaton, K. (1985). Dietary fibre, fibre-depleted foods and disease., pp 21-30
- Van Denffer D, Schumacher W, MagDefrau K Ehrendorfer F (1976) Excretory and secretory tissue. In. Strasbueger,s Textbook of botany. Longman, New York, pp118-121
- Viuda-Martos, M., López-Marcos, M. C., Fernández-López, J., Sendra, E.,

López-Vargas, J. H., & Pérez-Álvarez, J. A. (2010). Role of fiber in cardiovascular diseases: a review. *Comprehensive reviews in food science and food safety*, 9(2), 240-258.

Walter, J., Britton, R. A., & Roos, S. (2011). Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm. *Proceedings of the National Academy* of Sciences, 108(Supplement 1), 4645-4652.